The Gram Determinant of the Type B Temperley-lieb Algebra
نویسندگان
چکیده
In this paper, we solve a problem posed by the late Rodica Simion regarding type B Gram determinants, cf. [5]. We present this in a fashion influenced by the work of W.B.R.Lickorish on Witten-Reshetikhin-Turaev invariants of 3-manifolds. We will give a history of this problem in a sequel paper in which we also plan to address other related questions by Simion [6, 5] and connect the problem to Frenkel-Khovanov’s work [1].
منابع مشابه
The Gram Matrix of a Temperley-lieb Algebra Is Similar to the Matrix of Chromatic Joins
Rodica Simion noticed experimentally that matrices of chromatic joins (introduced by W. Tutte in [Tu2]) and the Gram matrix of the Temperley-Lieb algebra, have the same determinant, up to renormalization. In the type A case, she was able to prove this by comparing the known formulas: by Tutte and R. Dahab [Tu2, Dah], in the case of chromatic joins, and by P. Di Francesco, and B. Westbury [DiF, ...
متن کاملMeanders and the Temperley-Lieb algebra
The statistics of meanders is studied in connection with the Temperley-Lieb algebra. Each (multi-component) meander corresponds to a pair of reduced elements of the algebra. The assignment of a weight q per connected component of meander translates into a bilinear form on the algebra, with a Gram matrix encoding the fine structure of meander numbers. Here, we calculate the associated Gram deter...
متن کامل. R A ] 2 8 A ug 2 00 4 DESCRIPTION OF THE CENTER OF THE AFFINE TEMPERLEY - LIEB ALGEBRA OF TYPE Ã
Construction of the diagrammatic version of the affine Temperley-Lieb algebra of type A N as a subring of matrices over the Laurent polynomials is given. We move towards geometrical understanding of cellular structure of the Temperley-Lieb algebra. We represent its center as a coordinate ring of the certain affine algebraic variety and describe this variety constructing its desingularization.
متن کاملRepresentations of Temperley–lieb Algebras
We define a commuting family of operators T0, T1, . . . , Tn in the Temperley– Lieb algebra An(x) of type An−1. Using an appropriate analogue to Murphy basis of the Iwahori–Hecke algebra of the symmetric group, we describe the eigenvalues arising from the triangular action of the said operators on the cell modules of An(x). These results are used to provide the Temperley–Lieb algebras of type A...
متن کاملCommuting families in Hecke and Temperley-Lieb Algebras
We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008